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Rate processes in a delayed, stochastically driven, and overdamped system

Steve Guillouzic, Ivan L’'Heureux, and Andtengtin
Ottawa-Carleton Institute for Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
(Received 16 November 1999

A Fokker-Planck formulation of systems described by stochastic delay differential equations has been
recently proposed. A separation of time scales approximation allowing this Fokker-Planck equation to be
simplified in the case of multistable systems is hereby introduced, and applied to a system consisting of a
particle coupled to a delayed quartic potential. In that approximation, population numbers in each well obey a
phenomenological rate law. The corresponding transition rate is expressed in terms of the noise variance and
the steady-state probability density. The same type of expression is also obtained for the mean first passage
time from a given point to another one. The steady-state probability density appearing in these formulas is
determined both from simulations and from a small delay expansion. The results support the validity of the
separation of time scales approximation. However, the results obtained using a numerically determined steady-
state probability are more accurate than those obtained using the small delay expansion, thereby stressing the
high sensitivity of the transition rate and mean first passage time to the shape of the steady-state probability
density. Simulation results also indicate that the transition rate and the mean first passage time both follow
Arrhenius’ law when the noise variance is small, even if the delay is large. Finally, deterministic unbounded
solutions are found to coexist with the bounded ones. In the presence of noise, the transition rate from bounded
to unbounded solutions increases with the delay.

PACS numbsgps): 02.50.Ey, 02.30.Ks, 05.40a

[. INTRODUCTION [2], allows the rates appearing in a phenomenological noise-
induced rate law to be expressed solely in terms of the
When considering noise-driven multistable systems, it issteady-state probability density and the noise variance when
often of interest to characterize the noise-induced rate prahe latter is small. Another standard technid@é] allows
cesses between basins of attraction. Much work has bedhe same to be accomplished for the mean first passage time
devoted to this issue for nondelayed stochastic differentia{fMFPT), which is the mean time required to reach a given
equations, whether they be driven by white nojde-4], point in space for the first time when starting from another
Ornstein-Uhlenbeck nois¢5,6], or colored dichotomous given point. In this case, however, the result is applicable
noise[7-12. In general, however, the analytical tools usedwhether the noise variance is small or large.
to study nondelayed stochastic differential equations are not Using the separation of time scales approximation, both
directly applicable to the characterization of stochastic delayf these techniques are applied in this paper to study the
differential equations (SDDE’S) because of the non- stochastic evolution of a particle in a delayed symmetric
Markovian character of these equations. This is unfortunatguartic potential. This system has been chosen since it is the
since SDDE'’s play an increasingly important role in severalarchetypical example of symmetric bistable potentials, which
fields of research. For instance, SDDE’s are used in botlre used in a variety of application7], and can help cap-
physiology[13—16 and optic§17,18 to model noise-driven ture several essential characteristics of delayed multistable
systems exhibiting delayed feedback. Furthermore, noisesystems. Furthermore, delayed-coupled oscillator systems
induced rate processes in delayed sytems are of current iltave been the subject of recent wgéd,28—31. Studying
terest. Indeed, rate processes in noise-driven inertial systertise role of delays in an isolated multistable system can lead
damped according to a memory kernel were recently investo a better understanding of their importance in coupled mul-
tigated[19-21]. Such a memory kernel is formally equiva- tistable systems. Delayed dynamics often occur naturally in
lent to a distribution of time delays. Noise-induced rate pro-this context because of the finite speed at which information
cesses are also being studied in the context of delayed mafsstransmitted between elements.
[22] and integrate-and-fire modd[83]. In addition, a system The steady-state probability density appearing in formulas
of noise-driven delayed coupled differential equations wa®f the transition rates and the MFPT may be determined
the subject of a recent studg4]. from simulations or using an approximation scheme, such as
In the case of SDDE'’s, a univariate Fokker-Planck formu-the recently proposed small delay expansion technjggg
lation was recently proposd@5]|. Even though the resulting In this paper, the transition rates and MFPT’s obtained using
Fokker-Planck equatiofFPE cannot in general be solved a steady-state probability density determined from simula-
exactly, approximation schemes may be used. One sudions or from the small delay expansion are compared with
scheme, based on a separation of time scales and applicalttee values obtained directly from simulations.
to multistable systems, is presented in this paper. This The Fokker-Planck formulation of SDDE’s is summarized
method leads to a simplified FPE that can be used in conin Sec Il. Section Ill then introduces the separation of time
junction with standard techniques developed for Markoviarscales assumption, and Sec. IV reviews the small delay ap-
systems. One such technique, elaborated by Wu and Kaprptoximation. These concepts are applied to the delayed

1063-651X/2000/6(6)/49069)/$15.00 PRE 61 4906 ©2000 The American Physical Society



PRE 61 RATE PROCESSES IN A DELAYED, STOCHASTICALLY ... 4907

qyartic_ potential in Sec. V. Finally, concluding remarks are f—S(XO)E Iimf_(xo,to|x’,t’)
given in Sec. VI. ty e
Il. STEADY-STATE PROBABILITY DENSITY and
We consider the overdamped motion of a particle evolv- PS(Xo)= lim p(X,,to|X’,t"),

to—*

ing in a delayed and stochastically driven double-well poten-
tial V(Xo), with the separatrix located a(,=0. The time  ogacting houndary conditions lead to the so-called potential
evolution of such a system over the whole real axis is given,oiution

by the stochastic delay differential equation

dx(t) = f(x(t— 7)dt+ odW(D), ) p%(Xe) =N exp( 2 f X"dyTS(y)), ©
o“Jc

wherex is the state variable; is the delay g scales the noise

amplitude, and wherec is arbitrary. The constaril is determined from the

normalization condition

_ d o0
F(Xo) =~ gy V() ) f dxop(xg)=1

describes the deterministic evolution. In this papgrandx., and implicitly depends o
are used as dummy variables, and do not necessarily refer to
X(t) andx(t— 7), nor to initial conditions. The quantity/(t)
appearing in Eq(1) is a Wiener process whose initial con-
dition is 0 at timgtzo and is hence characterized by A. Separation of time scales approximation
g\évr;tgﬁe_a?/e?ggég\\i\érgs);e_ot\}e\rlvrheegl?z(a.ti.c;)z;iﬁggtgtsq (?)ninein- : I_Equ_ations(4)_ and(S) constitu_te together a ge_nerally non-
) trivial integrodifferential equation. However, if the CAD

volves delayed dynamics, its integration forward in time for— S )
t>t requires the initial conditiofx’ (t)|te[t'— 7,t']}. f(X,,to|x',t") is successfully determined by other means,

. s 0 Eg. (4) may then be solved independently from E§). In
Let 1o XX 1) dXdX, be the probability that 1 LAl o
X(t )E[D)EXOX 13)(0] |)a(1nd ))((tXc); EX[X " +dxp] givlelnythat this line of thought, when considering noise-induced pro-
o 010 T. TINT Tl . .
X(t)le(t) for allte [tl o T,t,]. Thusp(xo !to ;XT'tT|X',t') cesses in the double-well pOten“ay(Xo), the CAD

is a bivariate probability density that is conditional only on f(Xo,to|X",t") can in certain circumstances be approximated
the initial condition {x'(t)|te[t’—7,t']}. The univariate by its steady-state limit, which may be easier to evaluate. For

probability densityp(x,,t,|x’,t’) can then be defined as  instance, let 7p,, be the time scale over which
P(Xo,to X, to— 7|X’,t") equilibrates between the four quad-
o rants of thexyX, plane, andr,,, the time scale over which
p(xo,to|x’,t’)zf_wdxfp(xo,to;xT,tT|x’,t’). (3 this bivariate probability density relaxes within each of the
two quadrants for whictkx, andx, are of the same sign. If
Tpop IS Much larger than the delay the probability that the
particle undergoes a transition from one well to the other
within 7 units of time must be very small. Therefore
P(Xo,to;X,,to— 7|X’,t") must be much smaller whegq and
9 g _ X, are of opposite sign than when they are of the same sign.
S PO X 1) =~ a_xo{f(x" X1 p(Xo Xt} The CADf(x,,t,|x’,t"), defined by Eq(5), can in this case
be approximated by

IIl. NOISE-INDUCED RATE PROCESSES

It has been showf25] that the evolution of this univariate
probability density is given by the well-known Fokker-
Planck equation

2&2

g ’ogr
+__p(Xo,t|X it )1 (4)

Xo o1 X to— 7|X',t’
2 axg (O (o] T1%0 | )

_ 0 p

f(Xq,to|X',t’ :f dx,f(x,

(Xo Lol ) - (X5) ok g 1)
where (7)

whenx,<0, and by

_ o Xoilo i X, to— 7|X/ 1
f(xo,tolx',t'>zf dx,f(x P o X lo” ' )
-® p(XOItO|X vt )

— © Xo o1 X to— X't
(5 f(XOvto|X',t’)2f dxff(xr)p( S o=l )
° P(Xo,tolX/,t)

is called the conditional average drifEtAD) and is the av- ®)
erage ofdx/dt evaluated at time, given thatx(t;) =X,. AS  whenx,>0. Furthermore, in each of the two quadrants for
the delay vanishes(x,,to|x’,t") tends tof (x,) and Eq.(4)  which x, andx, are of the same sign, the bivariate probabil-
approaches the usual FPE associated with a nondelayed stty density p(X,,t,;X,,to— 7|X’,t’) is approximately pro-
chastic differential equatiofSDE). portional to its steady-state limit for all times much larger
Assuming the existence of the steady-state limits than 7. Sincep(X,,to;X,,to— 7/X’,t’) is much larger in
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these two quadrants than in the other two quadrants when 1 1

Toop> 7, the univariate probability densitp(X,,te|X’,t") NA(t[X",t") =5+ NA(t'|X',t')—E)exp(—(t—t’)/Tpc,p),
defined by Eq(3) is then approximately proportional to its (15)
steady-state limit separately in each of the two wells and the

ratio p(Xo,to ;X to— 7|X",t")/p(Xe,to|X',t") is approxi-  where

mately equal to its steady-state limit. In this regime, E@s.

and(8) lead to 1

Tpop™ 5

B B (16)
f(Xo tolX" ") =15(x,). 9
is the time scale over which the population numbers

Na(to|x’,t") andNg(to|x’,t") relax to their steady-state lim-
its.

The CADf_(xo,t0|x’,t’) can thus be approximated by its
steady-state limit for times much larger thag; when 7,
> 7. If furthermorer,,> 7, the approximate FPE

J ( t| ‘1) 4 {f—s( )n( t| ")) C. Mean first passage time
—PX, XU )= — —— X Xo s L[X", . .
atp ° %o 0P For a system described by an autonomous FPE like Eq.

P (10), the mean first passage tiri¢x, ,x,) required to reach
g ﬂ—p(x tlx’ ") (10) X=X, from x=x,; can be determined through the use of the
0 )

2 ox2 backward Fokker-Planck equatif?6]. This method leads to

can be used to study the equilibration of the probability den- 2 (x2 dy (v

sity p(Xo.to|X’,t") between the two wells of the bistable T(X1,X2) = ?L 5 )deZPS(Z) (173

potentialV(x,). It is interesting to note that the steady-state 1Py

CAD £%(x,) is fully determined by the steady-state probabil- yhenx,<x,, and to

ity density p3(x,) through Eq.(6).
2 (xx dy (=

B. Phenomenological transition rate T(Xq,Xp)= _2f f dzp(z) (A7b

aJx pS(y)Jy

When dealing with experimental measurements, it is often
of interest to consider the average evolution of an ensemblghany, >, .

of systems. In order to do so, population numbers for both a5 shown by Eqs(14) and(17), the time evolution of the

wells are defined as system described by the SDO) over time scales compa-
0 rable tor,,, can be easily characterized whep,,> 7i,; and
NA(tO|X',t')Ef dXoPp(Xg,to|X',t") (1D Toop> T (irrespective of the relation between and 7,),

once the steady-state probability dengityx,) is known. To
our knowledge, however, there exists no analytical or nu-
merical method to obtain the exact solution for the steady-
o state probability density of a general SDDE. Thoi¥x,)
NB(t0|x’,t’)Ef dX,P(Xe ,to|X 7). (120  must in general be evaluated using numerical simulations or
0 an analytical approximation such as the small delay Taylor
expansion presented in the next section.

and

Clearly, Na(to|x",t")+ Ng(to|x',t")=1. When 755> 7in¢,
projection operator techniques applied on Ed) lead to the )

d A quadratic expansion in powers of can be used to
—Na(t]x',t")=—k{Na(t|x',t")+ k Ng(t|x',t"), (13) obtain an approximate nondelayed stochastic differential
dt equation from a SDDE. This technique has already been
tested on a delayed linear Langevin equation and a stochastic
delayed logistic equatiof25]. In both of these cases, it leads

to accurate steady-state probability densities and steady-state
CAD’s for small values of the delay. Applying thisO(7?)
Taylor expansion to Eq.l) yields the approximate SDE

wherek; andk, are phenomenological rate constants.

For a small noise varianag® and a potentiaV/(x,) sym-
metrical with respect to its local maximum»ai=0, the rate
constants are approximately given [2]

k=ky=k,=—

x dy y
Xfo ps(y)(l—Zfodzps(z)>

Furthermore, in this case, both population numbers asymp-
totically approach 1/2 with time, and E@L3) leads to and

o2
4

Fdxps(x) dx="f,(x)dt+ og,(x)dW, (19
0

1 where

14

fa(xo)Ef(Xo)(l_TdiXOf(xo)) (19
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Ja(Xo)=1— Tdixof(xo)- (20

In these equations, the subscrpdtands for “approximate.”

Carrying such a Taylor expansion to higher orders is clearly
not straightforward, since there is no universally accepted
way of treating terms where the noise appears with a power

different than 1.

Let pa(X,,to|X',t")dx, be the probability thatx(t,)
e[ Xy,X,TdX,], given that x(t')=x’(t"), for a system
whose evolution is given by Eq18). Its time evolution is
given by the Fokker-Planck equation

J J
Epa(xo ,t|X/,t’)= - ﬁ_)%{fa(xo)pa(xo ,th/,t’)}

0-2 &2 2 Y
+7ﬁ{ga(xo)pa(xovt|x RS
0

(21)

which is obtained from the approximate SDB). This FPE
leads to the steady-state probability density
) : (22)

2 jxo
exg — | d
0'2 c
where N, is the normalization constant ardis arbitrary.
Equations(19), (20), and (22) can be used in conjunction
with Egs. (14), (16), and (17) to determine 7,,, and
T(X1,X2).
Equation(22) allows the determination of an approximate
expression for the steady-state CAB(x,). Indeed, let the

functionf_;(xo) be defined by the equation

Na
ga(Xo)

faly)
ga(y)

p;(xo) = y

S(Xo)=N exp(ijxod /13 )) (23)
pa o/~ Na 0_2 c yay ’

which corresponds to Ed6). Equating Eqs(22) and (23)
leads to

fa(Xo) — 02ga(X )ig (Xo)
E(Xo): dXO

92(Xo)
2
f(X0)+ T(Tzd—ng(xo)

5 , (24
1- Tﬁf(xo)

without any further approximation beyond the initial Taylor
expansion. As illustrated in Ref25] with a system de-
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V. APPLICATION TO DELAYED QUARTIC POTENTIAL
A. Deterministic evolution

The quartic potential

o
—x?

V(Xo) = §X4_ 3

(25

is a prototypical double-well potential. Scalibgy o~ * and
x by \al B, this potential leads to the differential equation

dx(t)=[x(t—7)—x3(t— 7)]dt. (26)
This delay differential equation has three fixed points=
—1, x,=0 andxz=1. Linearizing Eq(26) aroundx; yields
the equation

dy(t)=—2y(t—7)dt, (27)
where y(t)=x(t) —x;. Substitutingy(t)=e in Eq. (27)
leads to its characteristic equation

A+2e 2=0. (28
Using Eq.(28), all the eigenvalues of Eq. (27) are found to
have negative real parts when< /4, therefore indicating
that the fixed point, is stable for these values aof At 7
=/4, a pair of eigenvalues crosses the imaginary axis and
the fixed pointx, is thus unstable for> /4. By symmetry,

the same analysis also applies to the fixed prytOn the
other hand, the fixed point, is always unstable, as can be
seen by linearizing Eq26) around the origin.

The deterministic evolution of Eq26) can also be stud-
ied using numerical simulations. For concreteness, constant
initial conditions located in the left well are considered. Fur-
thermore, the initial conditions are chosen such as to avoid
unbounded solution&f. Sec. V B. For small delays, up to
about 7=0.785, the particle relaxes to the fixed pointxat
= —1, which is consistent with the eigenvalue analysis men-
tionned in the previous paragraph. For 0.£86<1.259, the
particle oscillates periodically in the left well. As the delay
reachesr=1.260, the particle starts to cross the boundary
x=0 between the two wells, but does not reach the right
local minimum of the potential. It is only when reaches
1.325 that the particle reaches both local minima in its evo-
lution. For 1.325<7<1.522, the trajectory is symmetrical.
However, whenr reaches 1.523, the trajectory becomes
asymmetrical. Aroundr=1.535, the trajectory starts to un-
dergo a series of period doubling bifurcations that culminates
to an apparently chaotic solution at a value obetween
1.538 and 1.539. As increases from 1.539 to 1.725, the
system exhibits aperiodic behavior with interspersed periodic
windows. The trajectories diverge whegs1.726.

B. Unbounded solutions

In addition to the bistability due to the existence of two

wells, another form of multistability is exhibited by E@6).
%his is illustrated in Fig. 1. Indeed, if a sufficiently large
) } Ko constant initial condition ovet e[ — 7,0] is specified, the
range ofx’s over which f3(x,) is a qualitatively accurate particle oscillates with an amplitude that increases indefi-
approximation offS(x,). Such an expansion must therefore nitely with time. This type of solution can be qualified as
be considered on a case by case basis. “unbounded.” In order for the system to exhibit one of the

scribed by a stochastic delayed logistic equation, performin
a furtherO(7?) Taylor expansion on Edq24) can reduce the
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FIG. 1. Deterministic time evolution of E¢26) with 7=0.1 for
two closeby constant initial conditions. The dashed line corresponds 0.5
to a constant initial condition of 4.33, from which the particle de- . . .
cays to a fixed point ax=1. The solid line, on the other hand, ' '
represents the trajectory of a particle for a constant initial conditon ~< g5 |
of 4.34. In this case, the particle oscillates with an amplitude that ?
increases with time. %
asymptotic solutions described in Sec. V A, which can be §° -15 F
qualified as “bounded,” the constant initial condition must
be smaller than a certain threshold that depends on the value °e
of the delay, as shown in Fig. 2. The coexistence of deter- 25 (b)
ministically bounded and unbounded solutions is of marked ' ) ) 0 | )

importance when the particle is subjected to an additive
noise that can drive the particle to large valuex.dindeed, X,

once the particle has reached a large enough value bf

starts to evolve on a deterministically unbounded trajectory. FIG. 3. Steady-state probability density of E9) for 7= o
On this trajectory, the influence of noise on the evolution of=0.1 on(a) a linear scale andb) a semilogarithmic scale. The
the particle is negligible. Thus the probability of escapingc?rdes represent values_ ol_otained by binning sample points from
from this trajectory is very small. This implies that the quar- 5|mulat|qns while the solid line comes frqm HBL). The error bars_ _
tic potential is in this case metastable, and that a steady-sta?é‘ the C|rcles_ gre caIguIated for each _bln as_ the standard deviation
probability density does not formally exist. However, a ©f the probability density for a set of simulations.
pseudo-steady-state probability density can still be defined
and used in Eqgs(14) and (17). In addition, as the delay
decreases, larger values »fare required in order for the When Gaussian white noise is added to EX§), it leads
particle to reach a deterministically unbounded trajectory ando the SDDE

the average residence time at the bottom of the potential

2

C. Pseudo-steady-state probability density

increases. For small values of the delay, the transition be- dx(t) =[x(t—7)=x*(t—7)]dt+ odW(t). (29
tween the two wells can therefore be studied without an . . :
problem yApplylng the O(7%) Taylor expansion presented in Sec. IV
' to Eq. (29 leads to the approximate CAD
1.5
_ (1-6702)%X,— X3
f3(Xo) = (30)
a(%o) 1—7(1-3x2)
-
= and to the approximate pseudo-steady-state probability den-
< sity
(%) =N Xg 1+ 27— 187207
Xo)=N,exg — -
PalXo 2 370? 95272
) win| —2=7 31)
08, T n———||.
Euo 1-7+ 3TX§

FIG. 2. Boundaryx, between the values of the constant initial
condition that lead to a bounded solutitB) of Eq. (26) and those ~ Equation(31) is obtained by setting the integration constant
that lead to an unbounded solutiod). For small delays, the po- C to zero in Eq.(22) and is formally valid forr<<1.
sition of this boundary seems to approacfe1/\/r. For delays As shown in Fig. 83), the pseudo-steady-state probability
larger thanr,=1.725, all solutions are unbounded. density is well approximated by Eq31) for 7=0¢2=0.1.
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Yo /0
FIG. 4. Steady-state conditional average drift of E2p) for = 3
=¢?=0.1. The circles represent values obtained from simulations,
and the solid line values from E30). For the simulations, the, 2 9
axis was divided into bins and the quantfifx(t— 7)) was periodi- 5 | 2
cally sampled and binned according to the valuex¢f). The 5 H
steady-state CAD®S(x,) was then obtained for each bin by calcu- s s
lating the average and the standard deviatiof(g{t— 7)). =y . P
L
]
Nevertheless, small discrepancies caused by the Taylor ex- °
pansion can be observed in Fig(bg the two peaks are (b)

slightly shifted inwards and the central minimum is shifted

upwards. As seen in Sec. V D, these small differences are
non-negligible when the pseudo-steady-state probability den- T
sity is used in Egs(14) and (17) to calculate rp,, and

H — 2__
T(x,,X,). Figure 4 presents the steady-state CAD for these F'G- 5. Time scalery,,, for (@) 7=0.1 and(b) o"=0.1. The
same values of and o. For these parameter values, it is circles represent rates obtained directly from sets of simulations
well approximated by E.q(30) ’ where all the realizations are initiated in the left well, and the popu-

. L . . lation numbemA(to|x’,t") is sampled over time. After initial tran-
— S Alto
With 7=0.1, p3(x,) qualitatively agrees with the simula- sients corresponding to relaxation within the left wilh(xo|x’,t")

tIC;I’I results as, the noise variance is increased up to aboWkcays exponentially over time and is fitted to ELE) in order to
o°=1. With 0°=0.1, the same is true as the delay is in- gpain Tpop @nd its standard deviation. The triangles and the solid
creased up to about=0.4. Equation(30) is valid for jine poth represent values coming from Eqg4) and (16), but
roughly the same range of parameter values. using two different steady-state probability densities. For the tri-
Since the mean first passage tifig). (17)] and the phe- angles, the steady-state probability density has been determined
nomenological transition rate between the two weEg).  through repeated simulations, leading to valuesgf, with asso-
(14)] are expressed in terms of the steady-state probabilitgiated standard deviations. For the solid line, the steady-state prob-
density, using Eq(31) in conjunction with these two equa- ability density has been determined using the small delay expansion
tions leads to valid results when the delay and the nois€Eq. (31)]. When numerically calculating the pseudo-steady-state
variance are sufficiently small. For larger delays and noisérobability density from simulations, the particle would sometimes
variances, the steady-state probability density must be detefeach an unbounded solution. When this happened, the faulty points
mined using numerical simulations. were discarded, a new realization was initiated and allowed to relax,
and the sampling was resumed using this new realizatiofa) Jithe
effective barrier heighAU appearing in Arrhenius’ law has been
D. Noise-induced rate processes calculated to be 0.2110.005 using a linear regression on the six

As shown in Fig. 5, Eq(14) leads to values of,, that rightmost circles.

are of the right order of magnitude for a wide range of noiseconjunction with a numerically determined probability den-
variances and for sufficiently small delays, whether thesity led to Tpop= 283+ 8. Even though these two values
steady-state probability density in E44) is determined nu-  slightly disagree with one another, they are still reasonably
merically or using the small delay expansipEq. (31)].  close, and underscore the validity of the separation of time
However, the “separation of time scales” approximation scales approximation for these valuesradind o, For such
leading to Eqg.(14) remains valid for larger delays than the a small delay, the time scale,; defined in Sec. lll A is
small delay expansion. Indeed, for larger delays, Fig. Sexpected to be of the same order of magnitude as the time
shows that Eq(14) better approximates the values gf,, scale over which the univariate probability density
obtained directly from simulations when the steady-state(x,,t,|x’,t") relaxes within each well. This latter time
probability density in that equation is determined from simu-scale was found to be of order one whes o>=0.1. This
lations rather than using E¢31). was done by numerically calculating the evolution of an ini-

In the case where=g2=0.1, for which the steady-state tial 5-function probability density centered at=—1, and
probability density is presented in Fig. 3, numerical simula-estimating the relaxation time of its variance within the left
tions indicated thatr,,,= 341+ 22, while Eq.(14) used in  well.
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FIG. 6. Mean first passage timgx;,X,) from x;=—1 to x,

X,

. . FIG. 7. Mean first passage tinTgx,,X,) from x,=—1 to sev-
_ _ 2_
=1 for (@) r=0.1 and(b) 0°=0.1. The circles are obtained by eral values ofk, for 7=0?=0.1 using(a) a linear scale an¢b) a

calculating the mean and the standard deviation of the first passa%%milogarithmic scale. The symbols have the same meaning as in

time for a set of realizations. The triangles and the solid line botr]:ig 6 except that both Eq€178 and (17b) have been used to
represent values coming from E(L73a, but using two different obt;ain the triangles and the solid line.

steady-state probability densities. For the triangles, the steady-state

probability density has been determined from simulations, and fo[mstable, of projecting the dynamics of the system onto a
the solid line from the small delay expansion. The error bars on th%ingle degree of freedom. This may also explain why, in Figs
triangles have been obtained in the same way as in Fig.(®),Ithe 5(a) and Ga), the difference between the valueswafop and
effective barrier heightU has been calculated to be 0-20.04, T(—1,1) obtained from simulations and those obtained using
using a linear regression on the six rightmost circles. Egs.(14) and(17) increases with the delay even whgtfx,)

These conclusions about the validity of the separation ofS determined from S'm”'a“o'ﬁ‘s- As (_expecFed, fOY a given
time scales assumption and the small delay approximatiof2!ue of the delayr, the effective barrier heightU is the
also apply to the determination of the MFPT using E43a  S2M€ for bOI_hTPOP .and.T(—l,l) ” On the other hand,i th?
and (17h. In particular, Fig. 6 shows that EL74 leads to effectl\_/e barrier height is a function of the delay and is dif-
a good approximation of the MFPT(—1,1) for a large ferentin ther=0.1and 1 cases.
range of noise variances and small delays. Furthermore, Fig.
7 shows that Eqs(178 and (17b) adequately approximate

T(—1x,) on the whole interva[ —1.5,1.3 for the case The Fokker-Planck equation that describes the time evo-
where7=¢"=0.1. However, the approximation is more ac- | sion of the probability density for a particle evolving in a
curate for end points, located between the starting point jgjaved bistable potential cannot in general be solved ex-
x;=—1 andx=0 than forx, between 0 and 1. actly. However, the separation of time scales assumption pre-
It is also worth noting from Figs. (& and @a) that the  genied in Sec. Il leads to a significantly simplifed FPE. This
logarithms ofrp,, andT(—1,1) are inversely proportional o Fpg can be used to express the mean time required for the
the noise variance when=0.1, and the noise variance is particle to go from one point to another in terms of the noise
small. Thus, for this value of the delay and a small noise,ariance and of the steady-state probability density. This can
variance, both7pep @and T(—1,1) follow Arrhenius’ law 5150 be accomplished for the rate coefficients appearing in a
e*V’"" where AU defines an effective barrier height. As phenomenological rate law when the noise variance is small.
shown in Fig. 8, Arrhenius’ law holds even wher=1, These quantities can thus be easily determined once the
which is significant since the fixed points are not stable forsteady-state probability density is known.
this value of the delay. However, Eqd4) and (17) do not As shown in Sec. V with a numerically determined
accurately predict the effective barrier height) for such a  steady-state probability density, these expressions for the
large delay. This discrepancy may arise from the inapproprimean first passage time and the rate coefficients are in agree-
ateness, for values of the delay such that the fixed points am@ent with the results of simulations when there is a good

VI. DISCUSSION
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6 the steady-state probability density is determined using simu-
s | ° lations. Indeed, the small modifications in the steady-state
9 probability density introduced by the Taylor expansion are
o4k s amplified when calculating the mean first passage time and
lf‘ a the phenomenological transition rate. Thus the separation of
o 3T N time scales approximation can be useful for a larger region of
a ° . . .
° P A parameter space when the steady-state probability density is
© generated numerically from simulations rather than when us-
1P ° ing the small delay expansion. Indeed, the Taylor expansion
° (a) is useful mainly when all the eigenvalues associated with the
0 ) ) ) ) ) fixed points are real. When some of the eigenvalues are com-
0 100 200 300 400 500 600 plex, the approximate system resulting from the Taylor ex-
1/o? pansion is inappropriate, since it is unidimensional and thus
cannot exhibit underdamped oscillations.
6 A very peculiar property of the deterministic delayed
N quartic potential that our work has uncovered is the coexist-
5T g ence of bounded and unbounded solutions. As seen in Sec.
= 4k . ¢ V B, if a sufficiently large constant initial condition is speci-
- . o fied, the particle oscillates around the origin with an ever
= 3F a o increasing amplitude. On the other hand, if the constant ini-
o 5 L £, tial condition is smaller than a threshold that depends on the
o a2 o value of the delay, the trajectory of the particle does not
1l diverge. When subjected to noise, the particle can undergo a
(b) transition from a bounded trajectory to an unbounded one.
0 : : : ! : Because of this phenomenon, the details of which are cur-
0 100 200 300 400 500 600 rently being investigated, a steady-state probability density
Vo> for an overdamped particle in a delayed quartic potential

does not formally exist for the type of noise considered here.
FIG. 8. (a) Time scaler,,, and (b) mean first passage time HOWwever, a pseudo-steady-state probability density can still
T(Xy,X;) from x;=—1 to x,=1 for 7=1. The symbols have the b€ defined by considering only the dynamics that precedes
same meaning as in Figs 5 and 6. For the simulation results, thé€ transition to unbounded solutions. This pseudo-steady-
effective barrier heightAU has been calculated to be (%1 state probability density can be used to calculate the mean
0.4)x107% in (a) and (7.19:0.08)x107% in (b) using linear re- first passage time and the phenomenological transition rate
gressions on the five rightmost circles. For the points obtained fromusing the formulas presented in this paper.
Egs. (14) and (173 in conjunction with a steady-state probability It would be very interesting to study the influence of the
density determined from simulationAU was found to be (4.94 noise correlation time on the phenomenological rate coeffi-
+0.06)x10 % in (a) and (4.7720.12)x10 % in (b) using linear  cients and on the mean first passage time. The likely appear-
regressions on the five rightmost triangles. ance of stochastic resonance in this delayed quartic potential,

separation of time scales. For the case of a particle Couple\g'tr;] or without eﬁternal folr cf:mg., cogld alscl; be mv_tijugated.

to a delayed quartic potential, this shows the existence of ﬂj; g Fl)res'encedo externa 'orcmhg, |t_may| e possible to “;F‘e
region in parameter space where the separation of time scal e delay In order to optimize the signal-to-noise ratio. Fi-

approximation is valid. Another interesting phenomenonna”y’ r_no,re theory is needed to und_erstand the or!g!n_of
suggested by the simulations is that both the mean first p{ifrrhenlu_s law at large delays, for which the deterministic

sage time and the phenomenological transition rate follo xed points are unstable.

Arrhenius’ law when the noise variance is small, even for
large delays.

The small delay expansiof25] summarized in Sec. IV
may also be used to determine the steady-state probability The authors are thankful to Frank Moss for discussions
density that appears in the formulas obtained using the sepduring the early stage of this work, to Jacques Laniel for
ration of time scales approximation. For small delays, thispreliminary simulations, and to Robert Maier for his helpful
approximation leads to values of the mean first passage timeomments. A. L. acknowledges support from the Los Ala-
and of the phenomenological transition rate that are close tmos National Laboratory, where work on the delayed quartic
simulation results. However, as the delay increases, the vapotential was initiated. This research was supported by
ues obtained for these two quantities are more accurate whayiants from NSERC, IODE, and ONR.
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