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Rate processes in a delayed, stochastically driven, and overdamped system
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A Fokker-Planck formulation of systems described by stochastic delay differential equations has been
recently proposed. A separation of time scales approximation allowing this Fokker-Planck equation to be
simplified in the case of multistable systems is hereby introduced, and applied to a system consisting of a
particle coupled to a delayed quartic potential. In that approximation, population numbers in each well obey a
phenomenological rate law. The corresponding transition rate is expressed in terms of the noise variance and
the steady-state probability density. The same type of expression is also obtained for the mean first passage
time from a given point to another one. The steady-state probability density appearing in these formulas is
determined both from simulations and from a small delay expansion. The results support the validity of the
separation of time scales approximation. However, the results obtained using a numerically determined steady-
state probability are more accurate than those obtained using the small delay expansion, thereby stressing the
high sensitivity of the transition rate and mean first passage time to the shape of the steady-state probability
density. Simulation results also indicate that the transition rate and the mean first passage time both follow
Arrhenius’ law when the noise variance is small, even if the delay is large. Finally, deterministic unbounded
solutions are found to coexist with the bounded ones. In the presence of noise, the transition rate from bounded
to unbounded solutions increases with the delay.

PACS number~s!: 02.50.Ey, 02.30.Ks, 05.40.2a
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I. INTRODUCTION

When considering noise-driven multistable systems, i
often of interest to characterize the noise-induced rate
cesses between basins of attraction. Much work has b
devoted to this issue for nondelayed stochastic differen
equations, whether they be driven by white noise@1–4#,
Ornstein-Uhlenbeck noise@5,6#, or colored dichotomous
noise@7–12#. In general, however, the analytical tools us
to study nondelayed stochastic differential equations are
directly applicable to the characterization of stochastic de
differential equations ~SDDE’s! because of the non
Markovian character of these equations. This is unfortun
since SDDE’s play an increasingly important role in seve
fields of research. For instance, SDDE’s are used in b
physiology@13–16# and optics@17,18# to model noise-driven
systems exhibiting delayed feedback. Furthermore, no
induced rate processes in delayed sytems are of curren
terest. Indeed, rate processes in noise-driven inertial sys
damped according to a memory kernel were recently inv
tigated@19–21#. Such a memory kernel is formally equiva
lent to a distribution of time delays. Noise-induced rate p
cesses are also being studied in the context of delayed m
@22# and integrate-and-fire models@23#. In addition, a system
of noise-driven delayed coupled differential equations w
the subject of a recent study@24#.

In the case of SDDE’s, a univariate Fokker-Planck form
lation was recently proposed@25#. Even though the resulting
Fokker-Planck equation~FPE! cannot in general be solve
exactly, approximation schemes may be used. One s
scheme, based on a separation of time scales and appli
to multistable systems, is presented in this paper. T
method leads to a simplified FPE that can be used in c
junction with standard techniques developed for Markov
systems. One such technique, elaborated by Wu and Ka
PRE 611063-651X/2000/61~5!/4906~9!/$15.00
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@2#, allows the rates appearing in a phenomenological no
induced rate law to be expressed solely in terms of
steady-state probability density and the noise variance w
the latter is small. Another standard technique@26# allows
the same to be accomplished for the mean first passage
~MFPT!, which is the mean time required to reach a giv
point in space for the first time when starting from anoth
given point. In this case, however, the result is applica
whether the noise variance is small or large.

Using the separation of time scales approximation, b
of these techniques are applied in this paper to study
stochastic evolution of a particle in a delayed symme
quartic potential. This system has been chosen since it is
archetypical example of symmetric bistable potentials, wh
are used in a variety of applications@27#, and can help cap-
ture several essential characteristics of delayed multist
systems. Furthermore, delayed-coupled oscillator syst
have been the subject of recent work@24,28–31#. Studying
the role of delays in an isolated multistable system can l
to a better understanding of their importance in coupled m
tistable systems. Delayed dynamics often occur naturally
this context because of the finite speed at which informat
is transmitted between elements.

The steady-state probability density appearing in formu
of the transition rates and the MFPT may be determin
from simulations or using an approximation scheme, such
the recently proposed small delay expansion technique@25#.
In this paper, the transition rates and MFPT’s obtained us
a steady-state probability density determined from simu
tions or from the small delay expansion are compared w
the values obtained directly from simulations.

The Fokker-Planck formulation of SDDE’s is summariz
in Sec II. Section III then introduces the separation of tim
scales assumption, and Sec. IV reviews the small delay
proximation. These concepts are applied to the dela
4906 ©2000 The American Physical Society
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quartic potential in Sec. V. Finally, concluding remarks a
given in Sec. VI.

II. STEADY-STATE PROBABILITY DENSITY

We consider the overdamped motion of a particle evo
ing in a delayed and stochastically driven double-well pot
tial V(xo), with the separatrix located atxo50. The time
evolution of such a system over the whole real axis is giv
by the stochastic delay differential equation

dx~ t !5 f „x~ t2t!…dt1sdW~ t !, ~1!

wherex is the state variable,t is the delay,s scales the noise
amplitude, and

f ~xo![2
d

dxo
V~xo! ~2!

describes the deterministic evolution. In this paper,xo andxt
are used as dummy variables, and do not necessarily ref
x(t) andx(t2t), nor to initial conditions. The quantityW(t)
appearing in Eq.~1! is a Wiener process whose initial con
dition is 0 at time t50 and is hence characterized b
^W(t)&50 and ^W2(t)&5t, where ^•••& denotes an en
semble average~average over realizations!. Since Eq.~1! in-
volves delayed dynamics, its integration forward in time
t.t8 requires the initial condition$x8(t)utP@ t82t,t8#%.

Let p(xo ,to ;xt ,ttux8,t8)dxodxt be the probability that
x(to)P@xo ,xo1dxo# and x(tt)P@xt ,xt1dxt#, given that
x(t)5x8(t) for all tP@ t82t,t8#. Thusp(xo ,to ;xt ,ttux8,t8)
is a bivariate probability density that is conditional only o
the initial condition $x8(t)utP@ t82t,t8#%. The univariate
probability densityp(xo ,toux8,t8) can then be defined as

p~xo ,toux8,t8![E
2`

`

dxtp~xo ,to ;xt ,ttux8,t8!. ~3!

It has been shown@25# that the evolution of this univariate
probability density is given by the well-known Fokke
Planck equation

]

]t
p~xo ,tux8,t8!52

]

]xo
$ f̄ ~xo ,tux8,t8!p~xo ,tux8,t8!%

1
s2

2

]2

]xo
2

p~xo ,tux8,t8!, ~4!

where

f̄ ~xo ,toux8,t8![E
2`

`

dxt f ~xt!
p~xo ,to ;xt ,to2tux8,t8!

p~xo ,toux8,t8!
~5!

is called the conditional average drift~CAD! and is the av-
erage ofdx/dt evaluated at timeto given thatx(to)5xo . As
the delay vanishes,f̄ (xo ,toux8,t8) tends tof (xo) and Eq.~4!
approaches the usual FPE associated with a nondelayed
chastic differential equation~SDE!.

Assuming the existence of the steady-state limits
-
-

n

to

r

to-

f̄ s~xo![ lim
to→`

f̄ ~xo ,toux8,t8!

and

ps~xo![ lim
to→`

p~xo ,toux8,t8!,

reflecting boundary conditions lead to the so-called poten
solution

ps~xo!5N expS 2

s2Ec

xo
dy f̄s~y!D , ~6!

wherec is arbitrary. The constantN is determined from the
normalization condition

E
2`

`

dxops~xo!51

and implicitly depends ont.

III. NOISE-INDUCED RATE PROCESSES

A. Separation of time scales approximation

Equations~4! and~5! constitute together a generally non
trivial integrodifferential equation. However, if the CAD
f̄ (xo ,toux8,t8) is successfully determined by other mean
Eq. ~4! may then be solved independently from Eq.~5!. In
this line of thought, when considering noise-induced p
cesses in the double-well potentialV(xo), the CAD
f̄ (xo ,toux8,t8) can in certain circumstances be approxima
by its steady-state limit, which may be easier to evaluate.
instance, let tpop be the time scale over which
p(xo ,to ;xt ,to2tux8,t8) equilibrates between the four quad
rants of thexoxt plane, andt int , the time scale over which
this bivariate probability density relaxes within each of t
two quadrants for whichxo and xt are of the same sign. I
tpop is much larger than the delayt, the probability that the
particle undergoes a transition from one well to the oth
within t units of time must be very small. Therefor
p(xo ,to ;xt ,to2tux8,t8) must be much smaller whenxo and
xt are of opposite sign than when they are of the same s
The CAD f̄ (xo ,toux8,t8), defined by Eq.~5!, can in this case
be approximated by

f̄ ~xo ,toux8,t8!.E
2`

0

dxt f ~xt!
p~xo ,to ;xt ,to2tux8,t8!

p~xo ,toux8,t8!
~7!

whenxo,0, and by

f̄ ~xo ,toux8,t8!.E
0

`

dxt f ~xt!
p~xo ,to ;xt ,to2tux8,t8!

p~xo ,toux8,t8!
~8!

when xo.0. Furthermore, in each of the two quadrants
which xo andxt are of the same sign, the bivariate probab
ity density p(xo ,to ;xt ,to2tux8,t8) is approximately pro-
portional to its steady-state limit for all times much larg
than t int . Sincep(xo ,to ;xt ,to2tux8,t8) is much larger in
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these two quadrants than in the other two quadrants w
tpop@t, the univariate probability densityp(xo ,toux8,t8)
defined by Eq.~3! is then approximately proportional to it
steady-state limit separately in each of the two wells and
ratio p(xo ,to ;xt ,t02tux8,t8)/p(xo ,toux8,t8) is approxi-
mately equal to its steady-state limit. In this regime, Eqs.~7!
and ~8! lead to

f̄ ~xo ,toux8,t8!. f̄ s~xo!. ~9!

The CAD f̄ (xo ,toux8,t8) can thus be approximated by i
steady-state limit for times much larger thant int whentpop
@t. If furthermoretpop@t int , the approximate FPE

]

]t
p~xo ,tux8,t8!52

]

]xo
$ f̄ s~xo!p~xo ,tux8,t8!%

1
s2

2

]2

]xo
2

p~xo ,tux8,t8! ~10!

can be used to study the equilibration of the probability d
sity p(xo ,toux8,t8) between the two wells of the bistab
potentialV(xo). It is interesting to note that the steady-sta
CAD f̄ s(xo) is fully determined by the steady-state probab
ity densityps(xo) through Eq.~6!.

B. Phenomenological transition rate

When dealing with experimental measurements, it is of
of interest to consider the average evolution of an ensem
of systems. In order to do so, population numbers for b
wells are defined as

NA~ toux8,t8![E
2`

0

dxop~xo ,toux8,t8! ~11!

and

NB~ toux8,t8![E
0

`

dxop~xo ,toux8,t8!. ~12!

Clearly, NA(toux8,t8)1NB(toux8,t8)51. When tpop@t int ,
projection operator techniques applied on Eq.~10! lead to the
phenomenological equation@2#

d

dt
NA~ tux8,t8!52kfNA~ tux8,t8!1krNB~ tux8,t8!, ~13!

wherekf andkr are phenomenological rate constants.
For a small noise variances2 and a potentialV(xo) sym-

metrical with respect to its local maximum atxo50, the rate
constants are approximately given by@2#

k[kf5kr5
s2

4 F E
0

`

dxps~x!

3E
0

x dy

ps~y!
S 122E

0

y

dzps~z! D G21

. ~14!

Furthermore, in this case, both population numbers asy
totically approach 1/2 with time, and Eq.~13! leads to
en

e

-

n
le
h

p-

NA~ tux8,t8!5
1

2
1S NA~ t8ux8,t8!2

1

2Dexp„2~ t2t8!/tpop…,

~15!

where

tpop5
1

2k
~16!

is the time scale over which the population numbe
NA(toux8,t8) andNB(toux8,t8) relax to their steady-state lim
its.

C. Mean first passage time

For a system described by an autonomous FPE like
~10!, the mean first passage timeT(x1 ,x2) required to reach
x5x2 from x5x1 can be determined through the use of t
backward Fokker-Planck equation@26#. This method leads to

T~x1 ,x2!5
2

s2Ex1

x2 dy

ps~y!
E

2`

y

dzps~z! ~17a!

whenx1,x2, and to

T~x1 ,x2!5
2

s2Ex2

x1 dy

ps~y!
E

y

`

dzps~z! ~17b!

whenx1.x2.
As shown by Eqs.~14! and~17!, the time evolution of the

system described by the SDDE~1! over time scales compa
rable totpop can be easily characterized whentpop@t int and
tpop@t ~irrespective of the relation betweent and t int),
once the steady-state probability densityps(xo) is known. To
our knowledge, however, there exists no analytical or
merical method to obtain the exact solution for the stea
state probability density of a general SDDE. Thusps(xo)
must in general be evaluated using numerical simulation
an analytical approximation such as the small delay Tay
expansion presented in the next section.

IV. EXPANSION OF THE SDDE TO O„t2
…

A quadratic expansion in powers oft can be used to
obtain an approximate nondelayed stochastic differen
equation from a SDDE. This technique has already b
tested on a delayed linear Langevin equation and a stoch
delayed logistic equation@25#. In both of these cases, it lead
to accurate steady-state probability densities and steady-
CAD’s for small values of the delayt. Applying thisO(t2)
Taylor expansion to Eq.~1! yields the approximate SDE

dx5 f a~x!dt1sga~x!dW, ~18!

where

f a~xo![ f ~xo!S 12t
d

dxo
f ~xo! D ~19!

and
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ga~xo![12t
d

dxo
f ~xo!. ~20!

In these equations, the subscripta stands for ‘‘approximate.’’
Carrying such a Taylor expansion to higher orders is clea
not straightforward, since there is no universally accep
way of treating terms where the noise appears with a po
different than 1.

Let pa(xo ,toux8,t8)dxo be the probability thatx(to)
P@xo ,xo1dxo#, given that x(t8)5x8(t8), for a system
whose evolution is given by Eq.~18!. Its time evolution is
given by the Fokker-Planck equation

]

]t
pa~xo ,tux8,t8!52

]

]xo
$ f a~xo!pa~xo ,tux8,t8!%

1
s2

2

]2

]xo
2 $ga

2~xo!pa~xo ,tux8,t8!%,

~21!

which is obtained from the approximate SDE~18!. This FPE
leads to the steady-state probability density

pa
s~xo!5

Na

ga
2~xo!

expS 2

s2Ec

xo
dy

f a~y!

ga
2~y!

D , ~22!

where Na is the normalization constant andc is arbitrary.
Equations~19!, ~20!, and ~22! can be used in conjunctio
with Eqs. ~14!, ~16!, and ~17! to determine tpop and
T(x1 ,x2).

Equation~22! allows the determination of an approxima
expression for the steady-state CADf̄ s(xo). Indeed, let the
function f̄ a

s(xo) be defined by the equation

pa
s~xo!5Na expS 2

s2Ec

xo
dy f̄a

s~y!D , ~23!

which corresponds to Eq.~6!. Equating Eqs.~22! and ~23!
leads to

f̄ a
s~xo!5

f a~xo!2s2ga~xo!
d

dxo
ga~xo!

ga
2~xo!

5

f ~xo!1ts2
d2

dxo
2

f ~xo!

12t
d

dxo
f ~xo!

, ~24!

without any further approximation beyond the initial Tayl
expansion. As illustrated in Ref.@25# with a system de-
scribed by a stochastic delayed logistic equation, perform
a furtherO(t2) Taylor expansion on Eq.~24! can reduce the
range ofx’s over which f̄ a

s(xo) is a qualitatively accurate

approximation off̄ s(xo). Such an expansion must therefo
be considered on a case by case basis.
ly
d
er

g

V. APPLICATION TO DELAYED QUARTIC POTENTIAL

A. Deterministic evolution

The quartic potential

V~xo!5
b

4
x42

a

2
x2 ~25!

is a prototypical double-well potential. Scalingt by a21 and
x by Aa/b, this potential leads to the differential equation

dx~ t !5@x~ t2t!2x3~ t2t!#dt. ~26!

This delay differential equation has three fixed points:x15
21, x250 andx351. Linearizing Eq.~26! aroundx1 yields
the equation

dy~ t !522y~ t2t!dt, ~27!

where y(t)[x(t)2x1. Substitutingy(t)5elt in Eq. ~27!
leads to its characteristic equation

l12e2lt50. ~28!

Using Eq.~28!, all the eigenvaluesl of Eq. ~27! are found to
have negative real parts whent,p/4, therefore indicating
that the fixed pointx1 is stable for these values oft. At t
5p/4, a pair of eigenvalues crosses the imaginary axis
the fixed pointx1 is thus unstable fort.p/4. By symmetry,
the same analysis also applies to the fixed pointx3. On the
other hand, the fixed pointx2 is always unstable, as can b
seen by linearizing Eq.~26! around the origin.

The deterministic evolution of Eq.~26! can also be stud-
ied using numerical simulations. For concreteness, cons
initial conditions located in the left well are considered. Fu
thermore, the initial conditions are chosen such as to av
unbounded solutions~cf. Sec. V B!. For small delays, up to
aboutt50.785, the particle relaxes to the fixed point atx
521, which is consistent with the eigenvalue analysis m
tionned in the previous paragraph. For 0.786<t<1.259, the
particle oscillates periodically in the left well. As the dela
reachest51.260, the particle starts to cross the bound
x50 between the two wells, but does not reach the ri
local minimum of the potential. It is only whent reaches
1.325 that the particle reaches both local minima in its e
lution. For 1.325<t<1.522, the trajectory is symmetrica
However, whent reaches 1.523, the trajectory becom
asymmetrical. Aroundt51.535, the trajectory starts to un
dergo a series of period doubling bifurcations that culmina
to an apparently chaotic solution at a value oft between
1.538 and 1.539. Ast increases from 1.539 to 1.725, th
system exhibits aperiodic behavior with interspersed perio
windows. The trajectories diverge whent>1.726.

B. Unbounded solutions

In addition to the bistability due to the existence of tw
wells, another form of multistability is exhibited by Eq.~26!.
This is illustrated in Fig. 1. Indeed, if a sufficiently larg
constant initial condition overtP@2t,0# is specified, the
particle oscillates with an amplitude that increases ind
nitely with time. This type of solution can be qualified a
‘‘unbounded.’’ In order for the system to exhibit one of th
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asymptotic solutions described in Sec. V A, which can
qualified as ‘‘bounded,’’ the constant initial condition mu
be smaller than a certain threshold that depends on the v
of the delay, as shown in Fig. 2. The coexistence of de
ministically bounded and unbounded solutions is of mark
importance when the particle is subjected to an addi
noise that can drive the particle to large values ofx. Indeed,
once the particle has reached a large enough value ofx, it
starts to evolve on a deterministically unbounded trajecto
On this trajectory, the influence of noise on the evolution
the particle is negligible. Thus the probability of escapi
from this trajectory is very small. This implies that the qua
tic potential is in this case metastable, and that a steady-
probability density does not formally exist. However,
pseudo-steady-state probability density can still be defi
and used in Eqs.~14! and ~17!. In addition, as the delay
decreases, larger values ofx are required in order for the
particle to reach a deterministically unbounded trajectory
the average residence time at the bottom of the poten
increases. For small values of the delay, the transition
tween the two wells can therefore be studied without a
problem.

FIG. 1. Deterministic time evolution of Eq.~26! with t50.1 for
two closeby constant initial conditions. The dashed line correspo
to a constant initial condition of 4.33, from which the particle d
cays to a fixed point atx51. The solid line, on the other hand
represents the trajectory of a particle for a constant initial condi
of 4.34. In this case, the particle oscillates with an amplitude t
increases with time.

FIG. 2. Boundaryxb between the values of the constant initi
condition that lead to a bounded solution~B! of Eq. ~26! and those
that lead to an unbounded solution (U). For small delays, the po
sition of this boundary seems to approachxb}1/At. For delays
larger thantc.1.725, all solutions are unbounded.
e

lue
r-
d
e

y.
f

-
ate

d

d
al
e-
y

C. Pseudo-steady-state probability density

When Gaussian white noise is added to Eq.~26!, it leads
to the SDDE

dx~ t !5@x~ t2t!2x3~ t2t!#dt1sdW~ t !. ~29!

Applying the O(t2) Taylor expansion presented in Sec. I
to Eq. ~29! leads to the approximate CAD

f̄ a
s~xo!5

~126ts2!xo2xo
3

12t~123xo
2!

~30!

and to the approximate pseudo-steady-state probability d
sity

pa
s~xo!5Na expF2

xo
2

3ts2
2

112t218t2s2

9s2t2

3 lnS 12t

12t13txo
2D G . ~31!

Equation~31! is obtained by setting the integration consta
c to zero in Eq.~22! and is formally valid fort,1.

As shown in Fig. 3~a!, the pseudo-steady-state probabili
density is well approximated by Eq.~31! for t5s250.1.

ds

n
t

FIG. 3. Steady-state probability density of Eq.~29! for t5s2

50.1 on ~a! a linear scale and~b! a semilogarithmic scale. The
circles represent values obtained by binning sample points f
simulations while the solid line comes from Eq.~31!. The error bars
on the circles are calculated for each bin as the standard devia
of the probability density for a set of simulations.
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Nevertheless, small discrepancies caused by the Taylor
pansion can be observed in Fig. 3~b!: the two peaks are
slightly shifted inwards and the central minimum is shift
upwards. As seen in Sec. V D, these small differences
non-negligible when the pseudo-steady-state probability d
sity is used in Eqs.~14! and ~17! to calculatetpop and
T(x1 ,x2). Figure 4 presents the steady-state CAD for th
same values oft and s2. For these parameter values, it
well approximated by Eq.~30!.

With t50.1, pa
s(xo) qualitatively agrees with the simula

tion results as the noise variance is increased up to a
s251. With s250.1, the same is true as the delay is
creased up to aboutt50.4. Equation ~30! is valid for
roughly the same range of parameter values.

Since the mean first passage time@Eq. ~17!# and the phe-
nomenological transition rate between the two wells@Eq.
~14!# are expressed in terms of the steady-state probab
density, using Eq.~31! in conjunction with these two equa
tions leads to valid results when the delay and the no
variance are sufficiently small. For larger delays and no
variances, the steady-state probability density must be de
mined using numerical simulations.

D. Noise-induced rate processes

As shown in Fig. 5, Eq.~14! leads to values oftpop that
are of the right order of magnitude for a wide range of no
variances and for sufficiently small delays, whether
steady-state probability density in Eq.~14! is determined nu-
merically or using the small delay expansion@Eq. ~31!#.
However, the ‘‘separation of time scales’’ approximatio
leading to Eq.~14! remains valid for larger delays than th
small delay expansion. Indeed, for larger delays, Fig
shows that Eq.~14! better approximates the values oftpop
obtained directly from simulations when the steady-st
probability density in that equation is determined from sim
lations rather than using Eq.~31!.

In the case wheret5s250.1, for which the steady-stat
probability density is presented in Fig. 3, numerical simu
tions indicated thattpop5341622, while Eq.~14! used in

FIG. 4. Steady-state conditional average drift of Eq.~29! for t
5s250.1. The circles represent values obtained from simulatio
and the solid line values from Eq.~30!. For the simulations, thexo

axis was divided into bins and the quantityf „x(t2t)… was periodi-
cally sampled and binned according to the value ofx(t). The

steady-state CADf̄ s(xo) was then obtained for each bin by calc
lating the average and the standard deviation off „x(t2t)….
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conjunction with a numerically determined probability de
sity led to tpop528368. Even though these two value
slightly disagree with one another, they are still reasona
close, and underscore the validity of the separation of ti
scales approximation for these values oft ands2. For such
a small delay, the time scalet int defined in Sec. III A is
expected to be of the same order of magnitude as the
scale over which the univariate probability dens
p(xo ,toux8,t8) relaxes within each well. This latter tim
scale was found to be of order one whent5s250.1. This
was done by numerically calculating the evolution of an i
tial d-function probability density centered atx521, and
estimating the relaxation time of its variance within the le
well.

s,

FIG. 5. Time scaletpop for ~a! t50.1 and~b! s250.1. The
circles represent rates obtained directly from sets of simulati
where all the realizations are initiated in the left well, and the po
lation numberNA(toux8,t8) is sampled over time. After initial tran-
sients corresponding to relaxation within the left well,NA(xoux8,t8)
decays exponentially over time and is fitted to Eq.~15! in order to
obtain tpop and its standard deviation. The triangles and the so
line both represent values coming from Eqs.~14! and ~16!, but
using two different steady-state probability densities. For the
angles, the steady-state probability density has been determ
through repeated simulations, leading to values oftpop with asso-
ciated standard deviations. For the solid line, the steady-state p
ability density has been determined using the small delay expan
@Eq. ~31!#. When numerically calculating the pseudo-steady-st
probability density from simulations, the particle would sometim
reach an unbounded solution. When this happened, the faulty p
were discarded, a new realization was initiated and allowed to re
and the sampling was resumed using this new realization. In~a!, the
effective barrier heightDU appearing in Arrhenius’ law has bee
calculated to be 0.21160.005 using a linear regression on the s
rightmost circles.
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These conclusions about the validity of the separation
time scales assumption and the small delay approxima
also apply to the determination of the MFPT using Eqs.~17a!
and~17b!. In particular, Fig. 6 shows that Eq.~17a! leads to
a good approximation of the MFPTT(21,1) for a large
range of noise variances and small delays. Furthermore,
7 shows that Eqs.~17a! and ~17b! adequately approximat
T(21,x2) on the whole interval@21.5,1.5# for the case
wheret5s250.1. However, the approximation is more a
curate for end pointsx2 located between the starting poi
x1521 andx50 than forx2 between 0 and 1.

It is also worth noting from Figs. 5~a! and 6~a! that the
logarithms oftpop andT(21,1) are inversely proportional to
the noise variance whent50.1, and the noise variance
small. Thus, for this value of the delay and a small no
variance, bothtpop and T(21,1) follow Arrhenius’ law
eDU/s2

, where DU defines an effective barrier height. A
shown in Fig. 8, Arrhenius’ law holds even whent51,
which is significant since the fixed points are not stable
this value of the delay. However, Eqs.~14! and ~17! do not
accurately predict the effective barrier heightDU for such a
large delay. This discrepancy may arise from the inappro
ateness, for values of the delay such that the fixed points

FIG. 6. Mean first passage timeT(x1 ,x2) from x1521 to x2

51 for ~a! t50.1 and~b! s250.1. The circles are obtained b
calculating the mean and the standard deviation of the first pas
time for a set of realizations. The triangles and the solid line b
represent values coming from Eq.~17a!, but using two different
steady-state probability densities. For the triangles, the steady-
probability density has been determined from simulations, and
the solid line from the small delay expansion. The error bars on
triangles have been obtained in the same way as in Fig. 5. In~a!, the
effective barrier heightDU has been calculated to be 0.2160.04,
using a linear regression on the six rightmost circles.
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unstable, of projecting the dynamics of the system ont
single degree of freedom. This may also explain why, in F
5~a! and 6~a!, the difference between the values oftpop and
T(21,1) obtained from simulations and those obtained us
Eqs.~14! and~17! increases with the delay even whenps(xo)
is determined from simulations. As expected, for a giv
value of the delayt, the effective barrier heightDU is the
same for bothtpop and T(21,1). On the other hand, th
effective barrier height is a function of the delay and is d
ferent in thet50.1 and 1 cases.

VI. DISCUSSION

The Fokker-Planck equation that describes the time e
lution of the probability density for a particle evolving in
delayed bistable potential cannot in general be solved
actly. However, the separation of time scales assumption
sented in Sec. III leads to a significantly simplifed FPE. T
FPE can be used to express the mean time required for
particle to go from one point to another in terms of the no
variance and of the steady-state probability density. This
also be accomplished for the rate coefficients appearing
phenomenological rate law when the noise variance is sm
These quantities can thus be easily determined once
steady-state probability density is known.

As shown in Sec. V with a numerically determine
steady-state probability density, these expressions for
mean first passage time and the rate coefficients are in ag
ment with the results of simulations when there is a go

ge
h

ate
r
e

FIG. 7. Mean first passage timeT(x1 ,x2) from x1521 to sev-
eral values ofx2 for t5s250.1 using~a! a linear scale and~b! a
semilogarithmic scale. The symbols have the same meaning a
Fig. 6 except that both Eqs.~17a! and ~17b! have been used to
obtain the triangles and the solid line.
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separation of time scales. For the case of a particle cou
to a delayed quartic potential, this shows the existence
region in parameter space where the separation of time sc
approximation is valid. Another interesting phenomen
suggested by the simulations is that both the mean first
sage time and the phenomenological transition rate fol
Arrhenius’ law when the noise variance is small, even
large delays.

The small delay expansion@25# summarized in Sec. IV
may also be used to determine the steady-state probab
density that appears in the formulas obtained using the s
ration of time scales approximation. For small delays, t
approximation leads to values of the mean first passage
and of the phenomenological transition rate that are clos
simulation results. However, as the delay increases, the
ues obtained for these two quantities are more accurate w

FIG. 8. ~a! Time scaletpop and ~b! mean first passage tim
T(x1 ,x2) from x1521 to x251 for t51. The symbols have the
same meaning as in Figs 5 and 6. For the simulation results,
effective barrier heightDU has been calculated to be (7.16
0.4)31023 in ~a! and (7.1960.08)31023 in ~b! using linear re-
gressions on the five rightmost circles. For the points obtained f
Eqs. ~14! and ~17a! in conjunction with a steady-state probabili
density determined from simulations,DU was found to be (4.94
60.06)31023 in ~a! and (4.7760.12)31023 in ~b! using linear
regressions on the five rightmost triangles.
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the steady-state probability density is determined using si
lations. Indeed, the small modifications in the steady-s
probability density introduced by the Taylor expansion a
amplified when calculating the mean first passage time
the phenomenological transition rate. Thus the separatio
time scales approximation can be useful for a larger region
parameter space when the steady-state probability dens
generated numerically from simulations rather than when
ing the small delay expansion. Indeed, the Taylor expans
is useful mainly when all the eigenvalues associated with
fixed points are real. When some of the eigenvalues are c
plex, the approximate system resulting from the Taylor e
pansion is inappropriate, since it is unidimensional and t
cannot exhibit underdamped oscillations.

A very peculiar property of the deterministic delaye
quartic potential that our work has uncovered is the coex
ence of bounded and unbounded solutions. As seen in
V B, if a sufficiently large constant initial condition is spec
fied, the particle oscillates around the origin with an ev
increasing amplitude. On the other hand, if the constant
tial condition is smaller than a threshold that depends on
value of the delay, the trajectory of the particle does n
diverge. When subjected to noise, the particle can underg
transition from a bounded trajectory to an unbounded o
Because of this phenomenon, the details of which are c
rently being investigated, a steady-state probability den
for an overdamped particle in a delayed quartic poten
does not formally exist for the type of noise considered he
However, a pseudo-steady-state probability density can
be defined by considering only the dynamics that prece
the transition to unbounded solutions. This pseudo-stea
state probability density can be used to calculate the m
first passage time and the phenomenological transition
using the formulas presented in this paper.

It would be very interesting to study the influence of t
noise correlation time on the phenomenological rate coe
cients and on the mean first passage time. The likely app
ance of stochastic resonance in this delayed quartic poten
with or without external forcing, could also be investigate
In the presence of external forcing, it may be possible to tu
the delay in order to optimize the signal-to-noise ratio.
nally, more theory is needed to understand the origin
Arrhenius’ law at large delays, for which the determinis
fixed points are unstable.

ACKNOWLEDGMENTS

The authors are thankful to Frank Moss for discussio
during the early stage of this work, to Jacques Laniel
preliminary simulations, and to Robert Maier for his helpf
comments. A. L. acknowledges support from the Los A
mos National Laboratory, where work on the delayed qua
potential was initiated. This research was supported
grants from NSERC, IODE, and ONR.

he

m

@1# I. L’Heureux and R. Kapral, Phys. Lett. A136, 472 ~1989!.
@2# X.-G. Wu and R. Kapral, J. Chem. Phys.91, 5528~1989!.
@3# V. I. Mel’nikov, Phys. Rep.209, 1 ~1991!.
@4# H. A. Kramers, Physica~Amsterdam! 7, 284 ~1940!.
@5# P. Hanggi, T. J. Mroczkowski, F. Moss, and P. V. E. McClin-

tock, Phys. Rev. A32, 695 ~1985!.



s

y
.

,

4914 PRE 61GUILLOUZIC, L’HEUREUX, AND LONGTIN
@6# J. Masoliver, B. J. West, and K. Lindenberg, Phys. Rev. A35,
3086 ~1987!.

@7# I. L’Heureux and R. Kapral, J. Chem. Phys.88, 7468~1988!.
@8# I. L’Heureux and R. Kapral, J. Chem. Phys.90, 2453~1989!.
@9# I. L’Heureux, R. Kapral, and K. Bar-Eli, J. Chem. Phys.91,

4285 ~1989!.
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